

NGS is microbiology

Wouter Bossuyt

Genomics Core, Leuven

What's the use of technology if it is not usable?

Externe partners

Rapporten

Data

Patiënten/stalen

Forensische Geneeskunde

ARL

LAG

CME PO

Moleculaire diagnostiek

Library prep

Sequencing

Data analyse

Genomics Core

NGS workflow

Two main technologies

applications

- Targeted amplicon sequencing
 - 16s
 - NGS MLST
- Bacterial WGS
- Metagenomics
- outbreak monitoring

Virus discovery and detection

Targeted approach: 16S RNA typing

- 16S typing
 - Fast analysis of microbial species in sample

Targeted approach: NGS MLST

- Multilocus serotyping using NGS
- Multiplex PCR for 7 housekeeping genes → multiplex samples → sequence
 - Gene list dependent on taxonomy of interest
 - Sequence on long read sequencer
 - Depth of coverage important
- Limited info on resistance/virulence

Bacterial WGS

- Full sequencing of bacterial genomes
- Culture bacteria and isolate DNA
- Complete information
 - Typing
 - Pathogenecity monitoring during outbreak
 - Resistance monitoring
 - Identify known resistance mutations
 - Culture-based resistance monitoring in parallel to build more knowledge
 - *de novo* assembly to identify structural variants
 - Evolutionary tracking

Automated library prep for bacterial WGS

- Nextera XT on Echo Labcyte
 - Proven method
 - Scaled to very low volumes
 - In 384-well plates

Limited adoption of bacterial WGS

- Whole genome sequencing of bacterial genomes:
 - gives a lot of information
 - can combine many other tests in one test
- No large scale adoption
- What is holding people back?
 - Cost
 - Scalability
 - TAT
 - Knowhow

Optimization of bacterial WGS workflow

- Possibility of automated sample submission
- LIMS integration
- Reservation and scheduling of necessary equipment
- Workflow optimization

Metagenomics

- Get DNA from a ROI → sequence
- Identification of different species in an 'environmental' sample

Metagenomics

- Kraken as a tool for species identification
 - Identification of species
 - Quantification of species
- Possibility to select only reads from species of interest for further analysis

Outbreak monitoring

Metagenomics approach

- 1. Identify different bacterial species
 - Continue with likely species one at the time
- 2. Identify SNPs in sequence of closely related species
- 3. Use maximum likelihood approach to assemble phylogenetic tree

Maximum likelihood

- 1. Probability is sum of probability of each branch
- 2. Calculate probability for each possible tree
- 3. Choose phylogenetic tree with maximum likelihood

Outbreak monitoring

Metagenomics approach

- 1. Identify different bacterial species
 - Continue with likely species one at the time
- 2. Identify SNPs in sequence of closely related species
- 3. Use maximum likelihood approach to assemble phylogenetic tree
- 4. Align phylogenetic relations ships with epidemiological evidence

Route of transmission

Viral metagenomics

- Huge diversity!
- We can't yet guess the number of virus species
- Viral genomes are frequently less conserved
- Identification needs other approach
 - 1. Substract host reads first: except integration sites!
 - 2. Assembly of viral contigs, starting from viral gene database
 - 3. Tblastn to compare with viral database: less sensitive to variation

Reducing search space in variable genomes

Viral integration site detection

- Sequence tissues with expected viral integration
- Use split-read info and repetitive softclipmapping cycles
- Determine insertion site

Contamination checks

- Purified/cultured samples are sometimes contaminated
- Metagenomics tools added to existing NGS pipelines:

What other DNA do we have in here?

- Quality control for <u>entire</u> workflow
- Early warning system for contamination
- Potential reduction in contamination cultures

- Repetitive elements
 - Difficult to sequence
 - Low mappability
 - Problematic for *de novo* assembly

- Repetitive elements
- Plasmids
 - Abundance variable
 - Presence variable

- Repetitive elements
- Plasmids
- Horizontal gene transfer
 - Transformation/conjucation/transduction
 - Species identification more difficult
 - Phylogeny gives conflicting results
 - Route of transmission difficult to trace

- Repetitive elements
- Plasmids
- Horizontal gene transfer
- High recombination/mutation rates

Practical example

SPN Workflow

CDC pipeline - Sero/Pili, MLST, AB resistance

Metcalf BJ et al, Clin Microb Infec. 2016; 22(1)

SeroBA - Serotyping

ARIBA
Antimicrobial Resistance
Identification By Assembly

mapping/alignment and targeted local assembly approach

Cluster reference sequences (cd-hit-est) and map all read pairs (minimap):

MLST typing

Isolate characterization by multilocus sequence typing

Based on 7 housekeeping genes

SRST2 Short Read Sequence Typing for Bacterial Pathogens

Antimicrobial resistance – β-Lactam AB

Mosaic genes – de novo assembly Random forest model - PBP genes to MIC

	S	1	R
WGS_PEN_SIR_Meningitis	≤0.06	-	≥0.12
WGS_PEN_SIR_Nonmeningitis	≤2	4	≥8
WGS_AMO_SIR	≤2	4	≥8
WGS_MER_SIR	≤0.25	0.5	≥1
WGS_TAX_SIR_Meningitis	≤0.5	1	≥2
WGS_TAX_SIR_Nonmeningitis	≤1	2	≥4
WGS_CFT_SIR_Meningitis	≤0.5	1	≥2
WGS_CFT_SIR_Nonmeningitis	≤1	2	≥4
WGS_CFX_SIR	≤0.5	1	≥2

PEN: penicillin; AMO: amoxicillin; MER: meropenem TAX: cefotaxime; CFT: ceftriaxone; CFX: cefuroxime

Li, Y. et al., MBio. 2016 Jun 14;7(3). pii: e00756-16. Li, Y. et al., BMC Genomics. 2017 Aug 15;18(1):621. Metcalf, BJ. et al. Clin Microbiol Infect. 2016 Jan;22(1):60.e9-60.e29.

Automated cloud computing

Bring pipeline to the cloud using Docker

Docker is an open platform for developing, shipping, and running applications.

- Automated transfer of data upon sequencing
- Initiates different docker modules in the cloud
- Data and results stored and shareable through the cloud

Cloud computing approach

Case: Streptococcus pneumoniae

Timeline and cost reduction

- Library prep cost: 80% cost reduction by Echo use for library prep
- Sample number is scalable

Benefits of NGS in microbiology

- Less need to grow bacteria
- Reduction in diagnostic time possible
- Get more and wider information
 - More detailed information
 - Species identification
 - Typing
 - Resistance gene
 - Ability to trace route of infection

